| 1. | The dot product of a pseudovector and a vector is called a pseudoscalar . 一个赝矢量和一个矢量的标识称为赝标量。 |
| 2. | Use the vector dot product to find the obtuse angle between two diagonals of a cube . 用矢量点积求立方体的两条对角线所夹的钝角。 |
| 3. | Since scalars are independent of the coordinate system, the dot product of two vectors is called a scalar invariant . 因为标量与坐标系无关,故两个矢量的点积称为标量不变量。 |
| 4. | The dot product of two vectors is defined as follows 两个矢量的点积定义如下: |
| 5. | Some properties of the dot product over the free module znm 上点积的若干性质 |
| 6. | Determines the dot product of two 4 - d vectors 确定两个四维向量的点积。 |
| 7. | Determines the dot product of the two specified 3 - d vectors 确定两个指定的三维向量的点积。 |
| 8. | Returns the dot product of two quaternions 返回两个四元数的点积。 |
| 9. | The dot product of the specified vectors 指定的向量的点积。 |
| 10. | The dot product of the two quaternions 两个四元数的点积。 |